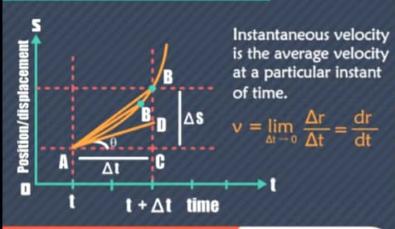


REST AND MOTION

DISTANCE

- The length of the actual path traversed by the particle is termed as its distance.
- Distance = S = length of path ACB.
- **~** Scalar quantity and is measured in meter. It can never decrease with time.

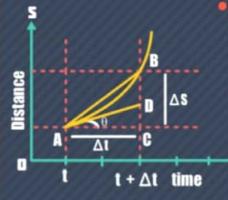
DISPLACEMEN'


AVERAGE VELOCITY

Average Velocity (
$$\vec{v}_{av}$$
) = $\frac{\text{Total Displacement}}{\text{Total Time Taken}} = \frac{\vec{B} - \vec{A}}{t}$

AVERAGE SPEED

Average Speed(
$$v_{av}$$
) = $\frac{\text{Total Distance Travelled}}{\text{Total Time Taken}} = \frac{\varsigma}{t}$


INSTANTANEOUS VELOCITY

- The change in position vector of the particle for a given time interval is known as its displacement.
- Displacement = B A
- It can decrease with time. Vector quantity and is measured in meter.

INSTANTANEOUS SPEED

The instantaneous speed is the speed at a particular instant of time. • $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

- Here As is the distance travelled in time At.
- The slope of the tangent equal ds/dt, which is equal to the instantaneous speed at 't'.

$$v = \tan(\theta) = \frac{DC}{AC} = \frac{ds}{dt}$$

EQUATIONS OF MOTION

1.
$$v = u + at$$

1.
$$v = u + at$$
 3. $s = ut + \frac{1}{2}at^2$

2.
$$v^2 - u^2 = 2as$$

2.
$$v^2 - u^2 = 2as$$
 4. $s_{nth} = u + \frac{a}{2} (2n - 1)$

ACCELERATION

When the velocity of a moving object/particle changes with time, we can say that it is accelerated.

Average Acceleration

Instantaneous Acceleration

$$a_{av} = \frac{\overrightarrow{v_2} - \overrightarrow{v_1}}{t_2 - t_1} = \frac{\Delta \overrightarrow{v}}{\Delta t} \qquad \overrightarrow{a} = \lim_{\Delta t \to 0} \overrightarrow{a}_{av} = \frac{d\overrightarrow{v}}{dt}$$

REACTION TIME

It's the difference between the time

when one see a situation to the time when one acts.

Reaction Time $\Delta t = t_1 - t_0$

